
$PEURå�1

PRESNENTING THE RESULTS OF VEHICLE DYNAMICS SIMULATION IN VIRTUAL 3D ENVIRONMENT
0LKD�$PEURå��%��6F�
Prof. Dr. Ivan Prebil
University of Ljubljana, Faculty of Mechanical Engineering, Centre for Element and Complete Design Modelling, Slovenia
142

ABSTRACT

Results of simulations done by mathematical models of
driving dynamics have to be presented in a clear and
appealing way. One possibility of this is presentation by
means of animation in virtual 3D environment. For the
mathematical model of control and riding dynamics of
road vehicles, developed at CEMEK, University of
Ljubljana, a library of low-polygon 3D geometrical
vehicle models is being built. Animations are written in
VRML2 and are composed of mathematical model
output data, vehicle geometry and animation core. We
have developed software to compose the animations,
write them programmatically and display the results in
virtual 3D environment. The required vehicle-specific
input data is retrieved from an existing vehicle database.
Currently, the mathematical model simulates riding
control and riding dynamics, and deals with vehicles as
systems of rigid bodies. The flexible structure of
software for writing animations and of the animation core
itself provides easy adaptation to possible future
expansions of the mathematical model.

INTRODUCTION

To display the results of a driving dynamics simulation
as an animation in virtual 3D environment, the vehicles,
the driving surface and other involved objects have to be
shown realistically. Therefore each vehicle has to be
represented by a geometrical model, modelled upon a
real vehicle. Since an integral library of low polygon-
count 3D vehicle and road object models isn’t yet
commercially available, we have decided to start building
our own.
One of the goals was to find a way to quickly and
cheaply model geometrical models of vehicles, suitable
for use in animations.
Two starting points were set:
• Vehicle models have to be modelled in enough detail

to be recognisable from every point of view in virtual
3D space.

• The number of vertices (and thus the number of
polygons) the vehicle model consists of, has to be
kept as low as possible to enable display of
animations on the widest possible range of hardware.

To achieve balance between these two contradicting
requirements, special care was taken to model the
distinguishing features of each vehicle with greater
precision, while attempting to simplify the non-
distinguishing ones. A few examples of such 3D vehicle
models on a model of a driving surface are shown in
Figure 1.

Figure 1

Examples of 3D vehicle models.

POSSIBLE WAYS OF APPLICATION

The primary use of a library of 3D geometrical models is
in presentation of vehicle dynamics. This includes
visualisation of traffic accidents and driving dynamics
and preparing images for various reports and analyses.
The secondary use of 3D geometrical models of vehicles
is in determining traces and damage on vehicles and
other objects during minor collisions (Figure 2). This can
find its use in investigating insurance frauds and similar,
and requires geometrical models of sufficient accuracy.

Figure 2.

Presentation of a collision in virtual 3D environment.

PREPARING THE 3D VIRTUAL ENVIRONMENT

Generating 3D Geometrical Models of Vehicles

Several options of achieving the stated goals were
considered before the actual start of development of the
procedures of generating the 3D model library:

$PEURå�2

• Generating 3D geometrical models from projections
of objects, by means of manually transferring points
into 3D space,

• Generating 3D geometrical models by employing 3D
scanning of real objects,

• Generating 3D geometrical models from series of
photographs by means of commercial software for
photomodelling.

The first option requires accurate drawings of at least
three parallel projections of each vehicle and was thus
soon rejected as too time consuming. The second option
was rejected due to lack of suitable equipment for 3D
scanning of live-sized vehicles and poor results obtained
by experiments with scaled-down models of vehicles on
a desktop 3D scanner. The third option has proven as a
relatively quick and reliable way of producing large
quantities of 3D geometrical models of vehicles.
To make the 3D geometrical models of vehicles suit the
requirements of the animation engine, a process of
generating 3D VRML2 geometrical model from series of
photographs (Figure 3) has been devised.

Figure 3.

Flow chart of generating geometrical 3D models.

The process consists of six main steps:
1. Acquiring a set of digital photographs of the vehicle to
be modelled. This can either be done with a standard film
camera or a digital camera. The benefit of using a digital
camera is better and more consistent geometrical
accuracy of photographs and the absence of having to
digitise the photographs, while scanning negative films
can yield higher image resolution and lower initial cost
for equipment.
2. Editing and converting the photographs into a format
suitable for photomodelling. In this step the digital
photographs are edited (colour equalisation, sharpening

etc.) and converted to a format, suitable for input into the
photomodelling software.
3. Photomodelling. By using photomodelling software
(commercial products such as AEA Technology
Geometra or EOS Systems PhotoModeler), in this step
the data from the photographs is processed and used to
generate 3D geometry. This step is the central part of the
model generating process and represents around 70 % of
the time used for creating a model. Since most ordinary
road vehicles are longitudinally symmetrical, we usually
model only one longitudinal half of a vehicle to conserve
time and reduce the needed number of photographs. As a
result of this step we get a raw model of one half of a
vehicle (Figure 4). The term "raw model" in this case
refers to a model that only contains basic geometry and
to which the information (such as colour and scale) has to
be added during the further phases of the model
generating process.

Figure 4.

Raw model of one half of a vehicle.

Figure 5.

Mirrored raw model of a vehicle.

4. Raw model editing. First, the raw model of a half of a
vehicle has to be mirrored to get a raw model of the

$PEURå�3

entire vehicle (Figure 5). Additional features that cannot
be photomodelled (vehicle bottom, hidden geometry of
commercial vehicles etc.) are added to the raw model
afterwards (Figure 6). This is also the step where we can
correct any possible errors (such as missing or misplaced
points) that may have been done during photomodelling.

Figure 6.

Raw model of a vehicle with added surfaces that
aren’t photomodelled (grey).

5. Scaling and conversion. The raw model has to be
properly scaled and coloured to reflect the size and the
colour of the real vehicle (Figure 7). Special care is taken
when assigning colours to groups of surfaces to make the
vehicle model suit the colour changing mechanism of the
animation core. Properly scaled and coloured model is
then converted into VRML2 format and edited (this
includes adding the "Driver’s view" viewpoint and
metacommands used by the VRMLPath programme
interface). After this step the model is ready to be used in
animation.

Figure 7.

Scaled and coloured model of a vehicle.

An example of a finished 3D geometrical vehicle model
placed in a simple virtual 3D environment is shown in
Figure 8.

Figure 8.

3D vehicle model used in presentation.

THE ANIMATION ENGINE

There are several possible ways of creating animations
from computed simulation data. These include:
• Using commercial software for dynamical analysis

with its internal animation viewers.
• Preparing animations as non-interactive movies with

generic animation software.
• Development of proprietary animation environment

using standard 3D libraries (OpenGL, Direct3D).
• Development of an universal animation core in

VRML and connecting it to a programme interface
to automate the process of preparing animations.

After considering the benefits and downsides of each of
the above options, VRML2 has been chosen as the tool
for creating animations from the simulation results. The
strongest reasons for this choice were:
• VRML2 is a public specification (Carey & Bell,

1997), which provides public availability of language
references, ready-made solutions in form of protos
etc.

• Animations are stored in compact files. Objects and
kinematics are stored as their geometrical
descriptions, rather than sequences of large images.

• VRML2 is a structured language, which enables easy
programmatic writing of animation files as well as
easy manual debugging afterwards.

• Animations can be divided into objects and
kinematics, which enables easy managing of the
model library.

• VRML2 files are portable and can be used on any
operating system as long as there is a VRML2
browser available for it.

• Animations are interactive (users can navigate the
virtual world, change viewpoints etc.). Interactivity is

$PEURå�4

provided by the VRML2 browser itself and follows
the same rules regardless of the browser used.

The animation core, written in VRML2, has been made
the base of the animation engine. The VRML2
specification includes language elements for creating
keyframed animations. The animated objects can be
anything from VRML intrinsic primitive shapes (boxes,
cylinders, spheres, ...) to complex objects in "inlined"
external files. A model of a conventional two-axle
vehicle, for example, is composed of five objects: the
bodywork and four wheels. These objects are visual
representations of the five rigid bodies used in the
mathematical model (CiglarLþ���������(DFK�REMHFW�FDQ�EH�
animated independently. The animation core includes all
the necessary means to describe the kinematics of the
five bodies and provides placeholders for the geometrical
models and the motion data computed by the
mathematical model (Figure 9).

Figure 9.

Composition of the animation core.

The principle of animation in VRML2 is keyframing
(Vince 1992) , where known positions (keyframes) and
orientations of objects on their respective motion curves
are given in discrete time intervals and linear
interpolation is done inbetween. In case of the presented
animation core this is achieved by using interpolators of
orientation and interpolators of position in conjunction
with sensors that enable user interaction. An example
sequence chart in Figure 10 shows an animation, where
geometry is controlled with output data from two
interpolators (orientationInterpolator and
positionInterpolator), which generate output in the pace
of timeSensor, which is controlled by touchSensor that
activates on mouse click.

Figure 10.

Flow of animation.

For a perception of fairly smooth motion the animation
has to run at at least 20 frames per second. This is

important, because the time interval at which the motion
data is computed by the mathematical model has to be set
according to this requirement. Smoothness of motion of
an animation depends on the speed of the host system the
animation is played on. If the animation is targeted to be
used on the widest possible range of hardware then the
length of the time interval between keyframes has to be
set as to achieve balance between smoothness of motion,
accuracy of display and capabilities of the hardware:
• too long a time interval may produce inaccurate

animation because of the nature of linear
interpolation (Figure 11),

• too short a time interval may overload the hardware
and thus produce an animation that won’t run in real
time.

W
�

W
�

W
� W

L��

W
L

W
L��

W
Q��

W
Q�� W

Q

W �W �������W �
� � Q

UGUGUG�� ������

UGUGUG��������G����G�����

UGUGUG������������G����G�����
Figure 11.

Inaccuracy in motion curve because of interpolation.

Integration of mathematical model and animation

We have developed a Win32 application (called
VRMLPath) that acts as the programme interface
between the mathematical model of vehicle dynamics
and the animation in virtual environment. It currently
automates the procedure of creating animations to the
extent where the user can:
• select a vehicle model from the list,
• display the vehicle model in the built-in preview

window,
• manually edit the file with the vehicle model,
• select a pre-computed motion curve (or, if the

required external modules are available, compute a
new one using the current mathematical model),

• add a 3D model of a driving surface (as an external
VRML2 file acquired from a GIS measurement),

• add custom objects (auxiliary objects, vertical
signalisation etc.) to the animation and manage their
position and appearance,

• prepare the animation and immediately display it in
the animation window (Figure 12),

• write the animation into a file that can, in general, be
transferred to any system and viewed with any
VRML2 browser.

The user interface is designed to enable the user to
accomplish these tasks quickly and is ready to provide

$PEURå�5

consistency throughout the application even with future
expansions to the VRMLPath. Each step of the animation
creation process is represented by a tab in the VRMLPath
main window (Figure 13). This makes the user interface
clear and any changes to input data easy.

Figure 12.

VRMLPath animation window.

Figure 13.

VRMLPath main window - divided into tabs.

A flow chart of creating a typical animation with
VRMLPath from the user’s point of view is shown in
Figure 14.
VRMLPath is built modularly, which makes it flexible in
several ways:

• it is easy to adapt to frequent changes to the
animation core during its test period,

• all the routines that interact with the mathematical
model are in a separate module and can be changed
without affecting the rest of code,

• it allows modifications and improvements to 3D
object models without changes to the program code,

• it enables re-use of its modules in other applications,
• it enables integration of modules from other

applications (e.g. the vehicle data window, Figure
15.),

• it enables implementation of new functions with
minimal changes to the existing code.

Figure 14.

Flow chart of creating an animation in VRMLPath.

VRMLPath is connected to an existing database of
vehicle data. This connection is used to automatically
retrieve the relevant data about the vehicle upon selection
of its model. The geometrical data is presented

$PEURå�6

graphically in its own window that enables editing of
data (Figure 15).

Figure 15.

VRMLPath: Vehicle data window.

CONCLUSION

The process of creating 3D geometrical models of
vehicles has been developed to the extent where every
land vehicle can be modelled and prepared to be used in
animation within one working day using the routine
procedures.
The current state of the animation engine and the
programme interface enables quick and easy testing of
mathematical algorithms and input data used by
mathematical model of vehicle dynamics as well as the
suitability of the animation engine itself. Future versions
of mathematical model will include 3D model of

collision, which will require further development of
vehicle models, the animation engine and the programme
interface, to allow display and animation of deformable
bodies.
The ultimate long-term goal of the work is to develop the
current solution into a self-contained application,
supported by a growing library of 3D models of vehicles
and other traffic related objects.
Along with the development of the mathematical models,
the future versions of VRMLPath will be developed to
include modules for displaying animations of human
body and its interaction with the vehicle and the driving
surface.

REFERENCES

&LJODULþ�� ,]WRN� ��������$SSURDFK� WR�PRGHO�GHYHORSPHQW�

for the analysis of road vehicle dynamics,
Proceedings of IAT’99, pp. 37-44, ISSN 1408-1679,
Nova Gorica, April 1999, ZSITS, Ljubljana

Carey, Rikk & Bell, Gavin (1997). The Annotated VRML
2.0 Reference Manual, Addison-Wesley Pub. Co.,
ISBN 0-12-249054-1, New York

Vince, John (1992). 3-D Computer Animation, Addison-
Wesley, ISBN 0-201-62756-6, London

CONTACT DATA

0LKD�$0%52ä��%��6F���8QLYHUVLW\�RI�/MXEOMDQD��)DFXOW\�
RI� 0HFKDQLFDO� (QJLQHHULQJ�� $ãNHUþHYD� �, SI-1000
Ljubljana, Slovenia,
E-mail: miha.ambroz@fs.uni-lj.si,
Phone: +386 1 4771-127
Prof. Dr. Ivan PREBIL, University of Ljubljana, Faculty
RI� 0HFKDQLFDO� (QJLQHHULQJ�� $ãNHUþHYD� ��� 6,-1000
Ljubljana, Slovenia,
E-mail: ivan.prebil@fs.uni-lj.si,
Phone: +386 1 4771-508

http://www.fs.uni-lj.si/cemek

